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Abstract
We construct a measure of entanglement by generalizing the quadric
polynomial of the Segre variety for general multipartite states. This measure
of entanglement works for any pure state and vanishes on multipartite product
states. We give explicit expressions for general pure three-partite and four-
partite states, and compare our measure of entanglement with the generalized
concurrence.

PACS numbers: 03.67.Mn, 42.50.Dv, 42.50.Hz

1. Introduction

Quantum entanglement has received a lot of attention in recent years because of its usefulness
in many quantum information and communication tasks such as quantum teleportation
and quantum cryptography. However, there are still many open questions concerning the
quantification and classification of multipartite states and also their true nature. Thus a
deep understanding of this interesting quantum mechanical phenomena could result in the
construction of new algorithms and protocols for quantum information processing. One widely
used measure of entanglement is the so-called concurrence [1]. Segre embedding provides
a setup for geometrical construction of concurrence [2, 3]. In this paper we will expand
our result on the Segre variety [4], which is a quadric (zero locus of quadratic polynomials),
by constructing a measure of entanglement for general pure multipartite states, which also
coincides with concurrence of general pure bipartite and three-partite states [5].

Denote a general, composite quantum system with m subsystems as Q =
Qp

m(N1, N2, . . . , Nm) = Q1Q2 · · ·Qm, with the pure state |�〉 = ∑N1
k1=1

∑N2
k2=1

· · · ∑Nm

km=1 αk1k2...km
|k1〉 ⊗ |k2〉 ⊗ · · · ⊗ |km〉 and corresponding to the Hilbert space HQ =

HQ1 ⊗HQ2 ⊗· · ·⊗HQm
, where the dimension of the j th Hilbert space is Nj = dim(HQj

). We
are going to use this notation throughout this paper. In particular, we denote a pure two-qubit
state by Qp

2 (2, 2). Next, let ρQ denote a density operator acting on HQ. The density operator
ρQ is said to be fully separable, which we will denote by ρ

sep
Q , with respect to the Hilbert space

0305-4470/06/319839+06$30.00 © 2006 IOP Publishing Ltd Printed in the UK 9839

http://dx.doi.org/10.1088/0305-4470/39/31/013
http://stacks.iop.org/JPhysA/39/9839


9840 H Heydari

decomposition, if it can be written as ρ
sep
Q = ∑N

k=1 pk

⊗m
j=1 ρk

Qj
,
∑N

k=1 pk = 1 for some

positive integer N, where pk are positive real numbers and ρk
Qj

denotes a density operator on

Hilbert space HQj
. If ρ

p

Q represents a pure state, then the quantum system is fully separable
if ρ

p

Q can be written as ρ
sep
Q = ⊗m

j=1 ρQj
, where ρQj

is the density operator on HQj
. If a state

is not separable, then it is said to be an entangled state.
Here are some prerequisites on projective algebraic geometry [6, 7]. Let C[z] =

C[z1, z2, . . . , zn] denote the polynomial algebra in n variables with complex coefficients.
Then, given a set of q polynomials {g1, g2, . . . , gq} with gi ∈ C[z], we define a complex affine
variety as

VC(g1, g2, . . . , gq) = {P ∈ Cn : gi(P ) = 0,∀ 1 � i � q}, (1)

where P = (a1, a2, . . . , an) is called a point of Cn and the ai are called the coordinates of P.
A complex projective space CPn is defined to be the set of lines through the origin in Cn+1,
that is,

CPn = Cn+1 − 0

(x1, . . . , xn+1) ∼ (y1, . . . , yn+1)
, λ ∈ C − 0, yi = λxi ∀ 0 � i � n + 1.

(2)

Given a set of homogeneous polynomials {g1, g2, . . . , gq} with gi ∈ C[z], we define a complex
projective variety as

V(g1, . . . , gq) = {O ∈ CPn : gi(O) = 0,∀ 1 � i � q}, (3)

where O = [a1, a2, . . . , an+1] denotes the equivalent class of point {α1, α2, . . . , αn+1} ∈ Cn+1.
We can view the affine complex variety VC(g1, g2, . . . , gq) ⊂ Cn+1 as a complex cone over
the complex projective variety V(g1, g2, . . . , gq).

2. Multi-projective variety and a multipartite entanglement measure

In this section, we will review the construction of the Segre variety. Then, we will construct
a measure of entanglement for general multipartite states based on a modification of the
definition of the Segre variety. This is an extension of our previous result on the construction
of a measure of entanglement for general pure multipartite states [4]. We can map the product
of spaces CPN1−1 × CPN2−1 × · · · × CPNm−1 into a projective space by its Segre embedding
as follows. Let

(
αi

1, α
i
2, . . . , α

i
Ni

)
be points defined on the complex projective space CPNi−1.

Then the Segre map

SN1,...,Nm
: CPN1−1 × CPN2−1 × · · · × CPNm−1 −→ CPN1N2···Nm−1

((
α1

1, α
1
2, . . . , α

1
N1

)
, . . . ,

(
αm

1 , αm
2 , . . . , αm

Nm

)) �−→ (
α1

i1
α2

i2
· · ·αm

im

)
. (4)

Next, let αi1i2···im , 1 � ij � Nj be a homogeneous coordinate function on CPN1N2···Nm−1.
Moreover, let us consider the composite quantum system Qp

m(N1, N2, . . . , Nm) and let
A = (

αi1i2...im

)
1�ij �Nj

, for all j = 1, 2, . . . , m. A can be realized as the following set
{(i1, i2, . . . , im) : 1 � ij � Nj,∀j}, in which each point (i1, i2, . . . , im) is assigned the
value αi1i2...im . This realization of A is called an m-dimensional box-shape matrix of size
N1 × N2 × · · · × Nm, where we associate with each such matrix a sub-ring SA = C[A] ⊂ S,
where S is a commutative ring over the complex number field. For each j = 1, 2, . . . , m, a
two-by-two minor about the j th coordinate of A is given by

Pj

k1l1;k2l2;...;kmlm
= αk1k2...km

αl1l2...lm − αk1k2...kj−1lj kj+1...km
αl1l2...lj−1kj lj+1...lm ∈ SA. (5)
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Then the ideal Im
A of SA is generated by Pj

k1l1;k2l2;...;kmlm
and describes the separable states in

CPN1N2···Nm−1 [8]. The image of the Segre embedding Im(SN1,N2,...,Nm
), which again is an

intersection of families of quadric hypersurfaces in CPN1N2···Nm−1, is called the Segre variety
and it is given by

Im(SN1,N2,...,Nm
) =

⋂
∀j

V
(
Pj

k1l1;k2l2;...;kmlm

)
. (6)

Now, we define an entanglement measure for a pure multipartite state as

E
(
Qp

m(N1, . . . , Nm)
) =


N

∑
∀j

∣∣Pj

k1l1;k2l2;...;kmlm

∣∣2




1
2

=
(
N

∑
kj ,lj ,j=1,2,...,m

∣∣αk1k2...km
αl1l2...lm − αk1k2...kj−1lj kj+1...km

αl1l2...lj−1kj lj+1...lm

∣∣2
) 1

2

,

(7)

where N is a normalization constant and j = 1, 2, . . . , m. This measure coincides with the
generalized concurrence for a general bipartite and three-partite state, but for reasons that we
have explained in [4], it fails to quantify the entanglement for m � 4, whereas it still provides
the condition of full separability. However, it is still possible to define an entanglement
measure for general multipartite states if we modify equation (7) in such a way that it contains
all possible permutations of indices. To do so, we propose a measure of entanglement for
general pure multipartite states as

F
(
Qp

m(N1, . . . , Nm)
) =

(
N

∑
∀σ∈Perm(u)

∑
kj ,lj ,j=1,2,...,m

× ∣∣αk1k2...km
αl1l2...lm − ασ(k1)σ (k2)...σ (km)ασ(l1)σ (l2)...σ (lm)

∣∣2
) 1

2

, (8)

where σ ∈ Perm(u) denotes all possible sets of permutations of indices for which k1k2 . . . km

are replaced by l1l2 . . . lm, and u is the number of indices to permute. By construction, this
measure of entanglement vanishes on product states and it is also invariant under all possible
permutations of indices. Note that the first set of permutations defines the Segre variety, but
there are also additional complex projective varieties embedded in CPN1N2···Nm−1 which are
defined by other sets of permutations of indices in equation (8). These varieties are defined by
similar quadratic polynomials as those used to define the Segre variety. As the Segre variety
is defined by a completely decomposable tensor but our new varieties are defined by partially
decomposable tensors, these varieties must be different. As an example we will discuss the
four-partite system Qp

m(N1, . . . , N4), where we first encounter these new varieties. For this
quantum system we can partition the Segre embedding as follows:

where M1 = N1N2 − 1,M2 = N3N4 − 1 and (M1 + 1)(M2 + 1) = N1N2N3N4. For the Segre
variety, which is represented by a completely decomposable tensor, we have a commuting
diagram and SN1,...,N4 = (

SM1,M2

) ◦ (
I ⊗ SN3,N4

) ◦ (
SN1,N2 ⊗ I ⊗ I

)
. Now, if we assume
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that
(
SM1,M2

) ◦ (
I ⊗ SN3,N4

) ◦ (
SN1,N2 ⊗ I ⊗ I

)
is not defined by a completely decomposable

tensor, e.g., subsystems 1 and 2 are not decomposable, then this diagram does not commute.
However, the image of the composite map

(
SM1,M2

) ◦ (
I ⊗ SN3,N4

) ◦ (
SN1,N2 ⊗ I ⊗ I

)
gives

a complex projective variety in CPN1N2N3N4−1, which is defined by this new variety and is not
isomorphic to the Segre variety. This gives some insight about these new complex projective
varieties. However, it could be interesting to further investigate the geometry of these complex
projective varieties.

3. Some examples: three-partite and four-partite states

In this section, we will apply this measure of entanglement to three-partite and four-partite
states and give explicit expressions for the measure of entanglement for these states. We start
from the simplest multipartite states, namely three-partite states. Following equation (8), we
can write the measure of entanglement for such states as

F
(
Qp

3 (N1, N2, N3)
) =

(
N

∑
∀σ∈Perm(u)

∑
kj ,lj ,j=1,2,3

∣∣αk1k2k3αl1l2l3

− ασ(k1)σ (k2)σ (k3)ασ(l1)σ (l2)σ (l3)

∣∣2
) 1

2

=
(
N

3∑
p1=1

∑
∀kj ,lj

∣∣αk1k2k3αl1l2l3 − αk1lp1 k3αl1kp1 l3

∣∣2
) 1

2

=
(
N

∑
k1l1;k2l2;k3l3

(∣∣αk1k2k3αl1l2l3 − αk1k2l3αl1l2k3

∣∣2

+
∣∣αk1k2k3αl1l2l3 − αk1l2k3αl1k2l3

∣∣2)
+

∣∣αk1k2k3αl1l2l3 − αl1k2k3αk1l2l3

∣∣2
) 1

2

.

(9)

This measure of entanglement for three-partite states (9) coincides with generalized
concurrence [5] for quantum Qp

3 (N,N,N), that is whenever N1 = N2 = N3 = N and
N = N

6(N−1)
. Moreover, this measure of entanglement is equivalent but not equal to our

entanglement tensor based on joint positive operator valued measure on phase space [9]. For
a three-qubit state Qp

3 (2, 2, 2), we have

F
(
Qp

3 (2, 2, 2)
) =

(
N

2∑
kj ,lj =1,j=1,2,3

[∣∣αk1k2k3αl1l2l3 − αl1k2k3αk1l2l3

∣∣2

+
∣∣αk1k2k3αl1l2l3 − αk1l2k3αl1k2l3

∣∣2
+

∣∣αk1k2k3αl1l2l3 − αk1k2l3αl1l2k3

∣∣2]) 1
2

= (4N {2[|α111α221 − α121α211|2 + |α112α222 − α122α212|2
+ |α111α212 − α112α211|2 + |α121α222 − α122α221|2 + |α111α122 − α112α121|2
+ |α211α222 − α212α221|2] + |α111α222 − α112α221|2 + |α111α222 − α121α212|2
+ |α111α222 − α122α211|2 + |α112α221 − α121α212|2 + |α112α221 − α122α211|2
+ |α121α212 − α122α211|2}) 1

2 . (10)

Next, we will discuss the measure of entanglement for four-partite states. In this case, we
have more than one set of permutations, and as we have explained before this is the reason
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why the measure of entanglement that is directly based on the polynomial that defines the
Segre variety fails to quantify the entanglement of four-partite states. Now, a measure of
entanglement based on the modified Segre variety for four-partite states is given by

F
(
Qp

4 (N1, N2, N3, N4)
) =

(
N

∑
∀σ∈Perm(u)

∑
kj ,lj ,j=1,2,3,4

∣∣αk1k2k3k4αl1l2l3l4

− ασ(k1)σ (k2)σ (k3)σ (k4)ασ(l1)σ (l2)σ (l3)σ (l4)

∣∣2
) 1

2

=
(
N

[ 4∑
p1=1

∑
∀kj ,lj

∣∣αk1k2k3k4αl1l2l3l4 − αk1k2lp1 k4αl1l2kp1 l4

∣∣2

+
∑

p1<p2

∑
∀kj ,lj

∣∣αk1k2k3k4αl1l2l3l4 − αk1lp1 lp2 k4αl1kp1 kp2 l4

∣∣2
]) 1

2

. (11)

An explicit expression for a four-qubit quantum system Qp

4 (2, 2, 2, 2) is given by

F
(
Qp

4 (2, 2, 2, 2)
) =

(
N

2∑
kj ,lj =1,j=1,2,3,4

[∣∣αk1k2k3k4αl1l2l3l4 − αl1k2k3k4αk1l2l3l4

∣∣2

+
∣∣αk1k2k3k4αl1l2l3l4 − αk1l2k3k4αl1k2l3l4

∣∣2
+

∣∣αk1k2k3k4αl1l2l3l4 − αk1k2l3k4αl1l2k3l4

∣∣2

+
∣∣αk1k2k3k4αl1l2l3l4 − αk1k2k3l4αl1l2l3k4

∣∣2
+

∣∣αk1k2k3k4αl1l2l3l4 − αl1l2k3k4αk1k2l3l4

∣∣2

+
∣∣αk1k2k3k4αl1l2l3l4 − αl1k2l3k4αk1l2k3l4

∣∣2
+

∣∣αk1k2k3k4αl1l2l3l4 − αl1k2k3l4αk1l2l3k4

∣∣2

+
∣∣αk1k2k3k4αl1l2l3l4 − αk1l2l3k4αl1k2k3l4

∣∣2
+

∣∣αk1k2k3k4αl1l2l3l4 − αk1l2k3l4αl1k2l3k4

∣∣2

+
∣∣αk1k2k3k4αl1l2l3l4 − αk1k2l3l4αl1l2k3k4

∣∣2]) 1
2

. (12)

The first set of permutations represented by the four first terms gives 4 × 28 = 112 quadratic
terms and the second set of permutations, which is represented by the last six terms, gives
6 × 6 = 36 quadratic terms. Thus, the measure of entanglement for four-qubit states contains
148 terms. We suspect that the measure of entanglement for four-qubit states also coincides
with the generalized concurrence [5] since both measures have the same number of terms
and they are also constructed by quadratic polynomials. The generalized concurrence [5]
is defined for composite quantum systems where all subsystems have the same dimension,
namely Qp

m(N,N, . . . , N). However, our measure of entanglement works for any pure
arbitrary dimensional quantum system Qp

m(N1, N2, . . . , Nm). Thus, it is possible that our
measure of entanglement F

(
Qp

m(N1, . . . , Nm)
)

coincides with the generalized concurrence
for the quantum systems Qp

m(N,N, . . . , N). In this case the normalization constant is given
by N = N

(2m−2)(N−1)
.
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